Protease-activated receptors (PAR)-1 and -3 drive epithelial-mesenchymal transition of alveolar epithelial cells - potential role in lung fibrosis.
نویسندگان
چکیده
Extravascular activation of the coagulation cascade in the lung is commonly observed in pulmonary fibrosis. Coagulation proteases may exert profibrotic cellular effects via protease-activated receptors (PARs)-1 and -2. Here, we investigated the potential role of two other members of the PAR family, namely PAR-3 and PAR-4, in the pathobiology of lung fibrosis. Elevated expression of PAR-3, but not PAR-4, was detected in the lungs of idiopathic pulmonary fibrosis (IPF) patients and in bleomycin-induced lung fibrosis in mice. Increased PAR-3 expression in fibrotic lungs was mainly attributable to alveolar type II (ATII) cells. Stimulation of primary mouse ATII, MLE15 and A549 cells with thrombin (FIIa) - that may activate PAR-1, PAR-3 and PAR-4 - induced epithelial-mesenchymal transition (EMT), a process that has been suggested to be a possible mechanism underlying the expanded (myo)fibroblast pool in lung fibrosis. EMT was evidenced by morphological alterations, expression changes of epithelial and mesenchymal phenotype markers, and functional changes. Single knockdown of FIIa receptors, PAR-1, PAR-3, or PAR-4, had no major impact on FIIa-induced EMT. Simultaneous depletion of PAR-1 and PAR-3, however, almost completely inhibited this process, whereas only a partial effect on FIIa-mediated EMT was observed when PAR-1 and PAR-4, or PAR-3 and PAR-4 were knocked down. PAR-1 and PAR-3 co-localise within ATII cells with both being predominantely plasma membrane associated. In conclusion, our study indicates that PARs synergise to mediate FIIa-induced EMT and provides first evidence that PAR-3 via its ability to potentiate FIIa-triggered EMT could potentially contribute to the pathogenesis of pulmonary fibrosis.
منابع مشابه
Thrombin induces epithelial-mesenchymal transition via PAR-1, PKC, and ERK1/2 pathways in A549 cells
Thrombin activates protease-activated receptor (PAR)-1 and induces a myofibroblast phenotype in normal lung fibroblasts. The origins of myofibroblasts are resident fibroblasts, fibrocytes, and epithelial-mesenchymal transition (EMT). We investigated the effects of thrombin, an important mediator of interstitial lung fibrosis, on EMT in A549 human alveolar epithelial cells. We show that thrombin...
متن کاملProteinase-activated receptor 4 stimulation-induced epithelial-mesenchymal transition in alveolar epithelial cells
BACKGROUND Proteinase-activated receptors (PARs; PAR1-4) that can be activated by serine proteinases such as thrombin and neutrophil catepsin G are known to contribute to the pathogenesis of various pulmonary diseases including fibrosis. Among these PARs, especially PAR4, a newly identified subtype, is highly expressed in the lung. Here, we examined whether PAR4 stimulation plays a role in the ...
متن کاملEffect of thalidomide on the alveolar epithelial cells in the lung fibrosis induced by bleomycin in mice
Introduction: Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive and usually fatal lung disease of unknown etiology for which no effective treatments currently exist. In the adults type I and II pneumocytes, forms Components of the alveolar epithelial cells. In this study, we investigated the effect of thalidomide on the alveolar epithelial cells (type I and II pneumocytes) in ...
متن کاملProtease-activated receptor-4 deficiency does not protect against bleomycin-induced pulmonary fibrosis in mice.
Protease-activated receptor (PAR)-4 is a thrombin receptor expressed in lung tissue. Previous in vitro data showed that PAR-4 triggers epithelial-to-mesenchymal transition, which is crucial in pulmonary fibrosis. These observations prompted us to investigate the role of PAR-4 in a murine model of bleomycin induced pulmonary fibrosis. We observed that wildtype and PAR-4 deficient mice developed ...
متن کاملThe increase of microRNA-21 during lung fibrosis and its contribution to epithelial-mesenchymal transition in pulmonary epithelial cells
BACKGROUND The excess and persistent accumulation of fibroblasts due to aberrant tissue repair results in fibrotic diseases such as idiopathic pulmonary fibrosis. Recent reports have revealed significant changes in microRNAs during idiopathic pulmonary fibrosis and evidence in support of a role for microRNAs in myofibroblast differentiation and the epithelial-mesenchymal transition in the conte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Thrombosis and haemostasis
دوره 110 2 شماره
صفحات -
تاریخ انتشار 2013